Task decomposition and module combination based on class relations: a modular neural network for pattern classification
نویسندگان
چکیده
In this paper, we propose a new method for decomposing pattern classification problems based on the class relations among training data. By using this method, we can divide a K-class classification problem into a series of ((2)(K)) two-class problems. These two-class problems are to discriminate class Ci from class Cj for i=1, ..., K and j = i+1, while the existence of the training data belonging to the other K-2 classes is ignored. If the two-class problem of discriminating class Ci from class Cj is still hard to be learned, we can further break down it into a set of two-class subproblems as small as we expect. Since each of the two-class problems can be treated as a completely separate classification problem with the proposed learning framework, all of the two-class problems can be learned in parallel. We also propose two module combination principles which give practical guidelines in integrating individual trained network modules. After learning of each of the two-class problems with a network module, we can easily integrate all of the trained modules into a min-max modular (M3) network according to the module combination principles and obtain a solution to the original problem. Consequently, a large-scale and complex K-class classification problem can be solved effortlessly and efficiently by learning a series of smaller and simpler two-class problems in parallel.
منابع مشابه
Task Decomposition Based on Class Relations: A Modular Neural Network Architecture for Pattern Classification
A b s t r a c t . In this paper, we propose a new methodology for decomposing pattern classification problems based on the class relations among training data. We also propose two combination principles for integrating individual modules to solve the original problem. By using the decomposition methodology, we can divide a K-class classification problem into (~) relatively smaller two-class cla...
متن کاملMicrosoft Word - TNN05-P762_final.DOC
Task Decomposition with Pattern Distributor (PD) is a new task decomposition method for multilayered feedforward neural networks. Pattern distributor network is proposed that implements this new task decomposition method. We propose a theoretical model to analyze the performance of pattern distributor network. A method named Reduced Pattern Training is also introduced, aiming to improve the per...
متن کاملNeural Network Task Decomposition Based on Output Partitioning
In this paper, we propose a new method for task decomposition based on output partitioning. The proposed method is able to find the appropriate architectures for largescale real-world problems automatically and efficiently. By using this method, a problem can be divided flexibly into several sub-problems as chosen, each of which is composed of the whole input vector and a fraction of the output...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملCombination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States
Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 10 5 شماره
صفحات -
تاریخ انتشار 1999